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Abstract
We develop a transfer matrix method and calculate the magneto-conductance of a cylindrical
wire in a longitudinal magnetic field for a wide range of magnetic fields and phase breaking
times. The transfer matrix method is compared with the results of Al’tshuler et al, which were
obtained by using the perturbation method. Good agreement is found in the limit where the
magnetic field is weak and the phase breaking length is much greater than the wire dimensions.
Generally, our study shows, in the case of a wire, that perturbation theory works well, and that it
only overestimates magneto-conductance a little, or that, in terms of data analysis, the value of
the phase breaking time fitted from the measured magneto-conductance using perturbation
theory tends to be a slight underestimate. The method developed here is also applicable to the
problem of the Aharonov–Bohm effect in a disordered metal ring.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electrons move in solids as probability waves and, hence,
display various interesting interference phenomena. An
important phenomenon is backscattering interference between
the quantum amplitudes of the clockwise and counterclockwise
paths of particle diffusion, in association with the phenomenon
of weak localization. This interference has attracted much
attention, as it has a drastic effect on the electrical conductance,
and can be varied or probed with an external magnetic field, as
it changes the time allowed for interference from τφ (called the
phase breaking time or dephasing time) to (1/τφ + 1/τB)

−1,
where τB is the magnetic dephasing time determined by the
magnetic flux enclosed in the diffusion path. Extensive study
of the magneto-conductance (MC) of disordered systems due
to backscattering interference can be traced back to as early
as the 1980s and is well documented in the literature [1–3].
For confined disordered systems, in particular, Al’tshuler et al
[4] developed a perturbation method for weak magnetic fields.
Beenakker et al [5] extended it to the ballistic regime. Lee et al

1 Address for correspondence: Department of Electrical Engineering,
National Tsing-Hua University, Hsin-Chu 300, Taiwan.

[6] developed a numerical method for films and rectangular
wires to cover a wide range of magnetic fields (with the field
perpendicular in the case of a wire).

Interest in the magneto-conductance (MC) of films and
wires seems to have revived recently, in connection with the
issue of the experimental observation of dephasing time satu-
ration, as the temperature drops [7, 8]. This has motivated us to
extend the early perturbation-theoretical study of MC for con-
fined systems. In particular, in this work we develop a transfer
matrix method to calculate the MC of a cylindrical wire valid
for a wide range of longitudinal magnetic fields and τφ which,
to our knowledge, has never been attempted before, regardless
of the shape of the wire’s cross section. We believe that this
extension is important for the analysis of experimental data
recorded at relatively strong fields and high temperatures. In
section 2, we describe the method. In section 3, we present the
results and a discussion. In section 4, we conclude the study.

2. Calculational method

First, we briefly describe the quantum correction, due to
backscattering, to the conductivity in a confined disordered
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Figure 1. (a) A cylinder wire, with radius = R and length = Lz , in
an applied magnetic field parallel to the wire. The vector potential
�A(�r) = 1

2
�B × �r .

system with non-interacting electrons. The correction δσ is
the following [4]:

δσ (�r) = −2e2

π h̄
DτC(�r , �r), (1)

where D is the diffusion coefficient, τ is the elastic scattering
time, and the Cooperon C(�r , �r ′) obeys the equation(

L + 1

τφ

)
C(�r , �r ′) = 1

τ
δ(�r − �r ′) (2a)

where L ≡ D( 1
i
�∇ − 2e

h̄c
�A(�r))2, with the boundary condition

(
∂

∂n
− i2e

h̄c
�A(�r) · n̂

)
C(�r , �r ′)

∣∣∣∣
S

= 0 (2b)

for a confined system. Here, τφ is the phase breaking time
due to, for example, electron–electron or electron–phonon
interaction, �A(�r) is the vector potential of the applied magnetic
field, and n̂ is the unit normal vector on boundary S of the
system. The boundary condition, equation (2b), means that
the normal component of diffusion current vanishes at the
boundary. Note that C(�r , �r ′) is basically a Green’s function,
and hence can be expanded in terms of eigenfunctions of the
auxiliary equation, as follows:

C(�r , �r ′) = 1

τ

∑
α

	α(�r)	∗
α(�r ′)

λα + 1/τφ
(3)

where λα and 	α satisfy

L	α(�r) = λα	α(�r) (4a)

with the boundary condition(
∂

∂n
− i2e

h̄c
�A(�r) · n̂

)
	(�r)

∣∣∣∣
S

= 0. (4b)

We consider equations (4a) and (4b) for a cylindrical wire,
with radius R, as shown in figure 1. We employ cylindrical

coordinates (ρ, φ, z), and choose the gauge where the vector
potential is

�A(�r) = 1
2

�B × �r = 1
2 Bρφ̂.

Then L = L0 + L1 + L2, with

L0 = −D �∇2 = −D

(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+ 1

ρ2

∂2

∂φ2
+ ∂2

∂z2

)

L1 = −D
2eB

ih̄c

∂

∂φ
= iDl−2

B

∂

∂φ
, l−2

B = 2eB

h̄c

L2 = D

(
2eB

h̄c

)2(1

2
Bρ

)2

= 1

4
Dl−4

B ρ2.

Next, we reduce the problem by using the method of separation
of variables. Letting

	α(�r) = ψ(ρ)eimφeiqz z,

then[(
1

ρ

d

dρ
ρ

d

dρ
+ k2 − m2

ρ2

)
+ l−2

B

(
m − 1

4
l−2
B ρ2

)]
ψ(ρ) = 0,

k2 = λα/D − q2
z (4a′)

with the boundary condition

d

dρ
ψ(ρ)

∣∣∣∣
ρ=R

= 0. (4b′)

Equations (4a′) and (4b′) are the reduced equations, with
ρ as the only variable now. In the absence of magnetic field,
the solution is a Bessel function of the first kind, ψ(ρ) =
Jm(kmnρ), with k = kmn determined by the roots of the
function’s derivative, i.e.

k = kmn = βmn/R,
d

dx
Jm(x)

∣∣∣∣
x=βmn

= 0.

Also, the eigenvalue is λα = D(k2
mn +q2

z ) = D(β2
mn/R2 +q2

z ).
In the case of finite magnetic fields, however, there are no
analytical solutions, and we solve them by using the transfer
matrix method discussed below. We first rewrite the equation
in terms of the dimensionless variable ξ = ln(ρ/R) (which
maps ρ ∈ [0, R] ⇒ ξ ∈ [−∞, 0]):
[(

d2

dξ 2
+ β2e2ξ − m2

)
+ R2

Be2ξ

(
m − 1

4
R2

Be2ξ

)]
f (ξ) = 0,

(5a)
where β ≡ k R, RB ≡ R/ lB , and f (ξ) ≡ ψ(ρ(ξ)). The
boundary condition (4b′) now becomes

d f

dξ

∣∣∣∣
ξ=0

= 0. (5b)

We also need a boundary condition at ρ = 0, i.e. ξ → −∞,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m = 0, d f
dξ

∣∣∣∣
ξ→−∞

= 0

m �= 0, f

∣∣∣∣
ξ→−∞

= 0.

(5c)
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Figure 2. Variation of eigenvalues with magnetic field (since
R2/l2

B ∝ B): β2
mn(B) = (λmn(B)/D − q2

z )R
2.

The derivation of equation (5c) is discussed in appendix A.
Now, equation (5a) is analogous to the one-dimensional
problem of a particle moving in a potential, and the standard
numerical method of the transfer matrix can be employed
to solve equations (5a)–(5c). A brief sketch is provided in
appendix B. Note that the method developed here is also
suited to the problem of the Aharonov–Bohm effect in a
disordered metal ring where the domain ρ ∈ [R1, R2] or ξ ∈
[ln(R1/ρ), ln(R2/ρ)] is used, which was previously treated
within the perturbation theory [1].

With the auxiliary eigenfunctions and eigenvalues solved,
equations (1) and (3) are used to calculate δg, the quantum
correction to conductance per unit length, as follows:

δg = 1

Lz

∫
δσ (�r) d3r

= − 2e2

π2h̄

∑
mn

R√
β2

mn + (R/ lφ)2
tan−1

(
R/ l√

β2
mn + (R/ lφ)2

)
,

where Lz is the wire length, lφ = √
Dτφ is the phase breaking

length, and β2
mn = (λmn/D − q2

z )R
2 is determined by the

eigenvalue obtained. MC is then given by �g(B) ≡ δg(B)−
δg(0). For comparison, the perturbation-theoretical result of
Al’tshuler et al [4] gives, for weak magnetic fields and lφ  R,

�gpert(B) = e2lφ
π h̄

(
1 − 1√

1 + τφ/τB

)
, (6)

where 1
DτB

= 1
8

DR2

l4
B

.

3. Result and discussion

We present numerical results for the wire with R = 10l,
where l = mean free path. In figure 2, we show the variation
of eigenvalues with magnetic field, for various m with n =
1. Here, β2

mn(B) = (λmn(B)/D − q2
z )R

2 is basically the
eigenvalue excluding the contribution from motion in the z-
direction and is obtained by using the transfer matrix method.

In figure 3, we show the MC of the wire versus
R2/ l2

B(∝B) for various lφ , calculated by using both the
transfer matrix method and perturbation theory. As expected,

Figure 3. MC of the wire versus R2/l2
B(∝ B) for various lφ . �g is

in units of 2e2/π2h̄. Solid curves are obtained by using the transfer
matrix method. Triangles, circles, and squares are obtained by using
perturbation theory.

Figure 4. MC of the wire versus R2/l2
φ for various lB . �g is in units

of 2e2/π2h̄. Solid curves are obtained with the transfer matrix
method. Triangles, circles, and squares are obtained by using the
perturbation theory.

the two theories converge at weak magnetic fields, and deviate
somewhat from each other with increasing magnetic field. In
fact, the perturbation theory slightly overestimates MC, as
shown in the figure. For example, the relative differences
between the two theories at R2/ l2

B = 5 are 19.5%, 9.4%, and
3.3% for lφ = R, lφ = 2R, and lφ = 5R, respectively. In terms
of data analysis, this means that, with perturbation theory, the
value of τφ fitted using equation (6) from the measured MC
tends to be a slight underestimate.

In figure 4, we show the MC of the wire versus R2/ l2
φ for

various lB , calculated with both the transfer matrix method and
perturbation theory. As shown in the figure, the two results
converge when R/ lφ decreases, and deviate slightly from each
other, with the relative difference increasing with R/ lφ .

4. Conclusion

We have developed a transfer matrix method to calculate the
MC of disordered wires in longitudinal magnetic fields. The
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method extends the range of study with perturbation theory in
this case, allowing a more extensive analysis of experimental
data taken at high fields and high temperatures. A comparison
of the perturbation-theoretical calculation versus the numerical
method developed here shows that perturbation theory works
well in general, and that the value of the phase breaking time
fitted from the measured MC using perturbation theory tends
to be a slight underestimate. The method developed here is
also suited to the problem of the Aharonov–Bohm effect in a
disordered metal ring.
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Appendix A

We derive equation (5c) here. We consider the auxiliary two-
dimensional (2D) problem of a confined disc. First, we note,
for a confined disc, that when τφ is short enough such that
the phase breaking length is much less than the disc size, then
C(�r = �r ′ = 0) is physically expected to approach that of an
infinite 2D system, that is, ln(τφ/τ), a finite value. On the other
hand, equation (3) expresses C(�r = 0, �r ′ = 0) as a sum over
discrete states, since the eigenvalue spectrum as determined
in equations (4a) and (4b) is discrete for a confined disc. In
order for the sum to be finite, each term must be finite. So, this
requires |	α(�r = 0)| in the numerator of each term to be finite.

According to equation (5a), when ξ → −∞, we obtain
asymptotically, for m = 0,

d2

dξ 2
f (ξ) ≈ 0 ⇒ f (ξ) ≈ C1ξ + C0.

Also, C1 = 0, following the requirement of |	α(�r = 0)| to be
finite. In other words,

d

dξ
f (ξ → −∞) = 0 for m = 0.

Similarly, for m �= 0, equation (5a) gives asymptotically, when
ξ → −∞,

(
d2

dξ 2
− m2

)
f (ξ) ≈ 0 ⇒ f (ξ) ≈ C+emξ + C−e−mξ .

The requirement of finite |	α(�r = 0)| results in C− = 0, or

f (ξ → −∞) = 0 for m �= 0.

Appendix B

The domain ξ ∈ [−∞, 0] is approximated as ξ ∈ [−ξ0, 0],
where ξ0 is a large positive number (chosen in such a way that
the numerical result stays about the same when ξ0 is further

increased). We divide the interval into N equal segments. In
the limit N → ∞, equation (5a) is approximated as
[(

d2

dξ 2
+ β2e2ξi − m2

)
+ R2

Be2ξi

(
m − 1

4
R2

Be2ξi

)]
f i (ξ) = 0

(B.1)
in the i th segment, where β2 = β2(λmn) = (λmn/D−q2

z )R
2 is

λmn-dependent (with λmn being a given trial value), f i (ξ) is the
solution in the segment, and ξi is a representative constant (say,
the value at the left endpoint) of the segment. f i (ξ) consists of
two parts, i.e. a right-moving part φi(ξ) and a left-moving part
φ̃i(ξ), with

f i (ξ) = φi (ξ)+ φ̃i (ξ). (B.2)

In the transfer matrix formalism [9, 10], the value
f (−ξ0)[=φ1(−ξ0) + φ̃1(−ξ0)] at the left endpoint of the
domain is linearly related to the value f (0)[=φN (0)+ φ̃N (0)]
at the right endpoint by the following formula:

ψ R = MNψ L (B.3)

where

ψ L =
(
φ1(−ξ0)

φ̃1(−ξ0)

)
≡

(
φL

φ̃L

)

ψ R =
(
φN (0)

φ̃N (0)

)
≡

(
φR

φ̃R

)
.

MN is the overall transfer matrix, consisting of a sequence of
matrices described in the following. We note that the solution
vector at the left end of the i th segment, represented as ψ i =
(φi(ξi ), φ̃

i (ξi ))
T, is related to ψ i+1 by the following formula:

ψ i+1 = Bi Ciψ i .

Here, Ci is the matrix connecting f i(ξ) at the left endpoint to
f i (ξ) at the right endpoint of the i th segment, and Bi is the
matrix of the boundary condition—continuity of the solution
and its derivative across the i th/(i + 1)th boundary. Explicitly,
MN is expressed as

MN = CN BN−1CN−1 · · · B1C1.

Note that each factor matrix in the product depends on λmn ,
and so does MN .

Last, we impose the boundary condition of equations (5b)
and (5c) on both ends of the domain. At ξ = −ξ0, the vector
ψ L is, for m = 0, chosen to be

ψ L =
(
φL

φ̃L

)
=

(
1
1

)

such that
d

dξ
f

∣∣∣∣
ξ=−ξ0

∝ φL − φ̃L = 0

satisfying (5c). For m �= 0,

ψ L =
(
φL

φ̃L

)
=

(
1

−1

)

such that
f |ξ=−ξ0 ∝ φL + φ̃L = 0,
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as required by (5c). ψR is then obtained by multiplying MN on
ψL according to equation (B.3). Now, if

d

dξ
f (ξ)

∣∣∣∣
ξ=0

∝ φR − φ̃R

happens to vanish, then the boundary condition (5b) at ξ = 0
is also satisfied and the trial value λmn is accepted as an
eigenvalue.
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